物联传媒 旗下网站
登录 注册
MHz
  • RFID常用工作频率包括低频125kHz、134.2kHz.高频13.56MHz,超高频860~930MHz,微波2.45GHz,5.8GHz等。因为低频125kHz、134.2kHz,高频13.56MHz系统以线圈作为天线,采用电感祸合的方式,其工作距离较近,一般不超过1.2m,带宽在欧洲及其他地区限制为几千赫兹。但超高频(860~93Uh1Hz)和微波(2.45GHz,5.8GHz)可以提供更远的工作距离,更高的数据速率,更小的天线尺寸,因此成为RFID的热点研究领域。
  • 目前这些协议被统称为800-900MHz超高频射频识别。而这些协议都继承了高速应答,快速盘点,读写距离较远的特点。而这些热门协议产品的性能成为使用的关键。其中尤其是标签,处于竞争激烈的中心。射频识别标签单价较低,但是用量很大,对于设计制造就要求更高。由于标签设计技术和生产工艺的缺陷和不稳定,就必须由性能测试来把关。
  • 这里采用多谐振的方法,通过微带天线的结构设计,实现了双频段的覆盖。在这种思路下,采用E形天线与倒F天线(IFA)相结合的设计,实现了一种低后瓣双频微带天线。天线谐振在850 MHz和920 MHz处,VSWR=1.09,带宽(VSWRlt;2)满足频段覆盖的要求。该天线制作在2 mm厚的FR4基板上,不仅具有小的尺寸,而且便于调协,易于制作。
  • 由于超高频RFID的接收和发射频率相同,读卡器结构基本为零中频结构。零中频结构的接收机射频前端没有选择滤波器,对邻近频率的信号抗干扰能力很弱。我国在《800/900 MHz频段射频识别(RFID)技术应用规定(试行)》中规定的跳频间隔为250 kHz,这对零中频结构的RFID读卡器在多询问机环境下工作是一个很大的技术难点。所以,在现阶段的多询问机环境下工作的UHF RFID读卡器,基本是工作于时分复用方式。在读卡器中加入单刀多掷开关(Single Pole 4Throw,SP4T),本机轮询4个天线,可以取代另外的3个读卡器,降低整个系统成本。
  • 工作在125或134kHz低频(LF)或者13.56MHz高频(HF)范围内的电感回路无源RFID系统,其工作距离仅限于大约1m的范围。UHF RFID系统工作在860至960MHz以及2.4GHZ的工业科学医疗(ISM)频段。其具有更长的工作距离,对无源标签而言典型工作范围为3至10m。标签从阅读器的射频信号接收信息和工作能量。如果标签在阅读器的范围内,就会在标签的天线上感应出交变的射频电压。该电压经过整流后为标签提供直流(DC)电源电压。通过调制天线端口的阻抗来实现标签对阅读器的响应。这样一来,标签将信号反向散射给阅读器。
  • 无线射频识技术是利用射频信号来识别物体的自动识别技术.RFID系统由电子标签(包括芯片和标签天线)、阅读器(含阅读器天线)和后台主机组成。当前,射频识别工作频率包括频率为低频(125KHz、134KHz)、高频频段(13.56MHz)、UHF超高频段(860~960MHz)和 2.45GHz以上的微波频段等。
  • 射频识别(Radio Frequency IdenTIficaTIon,RFID)技术是一种利用射频通信实现的非接触式自动识别技术,近年来随着大规模集成电路、网络通信、信息安全等技术的发展.RFID已进入商业化应用阶段,其应用规模也快速增长。一个RFID系统包括RFID读写器、RFID标签和软件3大组成部分。所采用的天线主要分为标签天线和读写器天线两种。标签天线是RFID系统中最易变的部分,并且其设计面临着小型化、低损耗和低成本的实际要求,所以优化设计标签天线在整个系统中占有重要地位。
  • RFID 技术是从 20 世纪 80 年代走向成熟的一项自动识别技术,近年来发展十分迅速。 目前,在全世界,基于 RFID 技术的电子标签,使用已经 非常广泛了,这主要取决于它的特性,RFID 标签可以使用在几乎所有的物理对象上。RFID 技术在 工业自动化,物体跟踪,交通运输控制管理,防伪校园卡,电子钱包,行李标签,收费系统,医用装 置,电子物品的监控和军事用途等方面已经得到了广泛的应用。例如第二代居民身份证,使用基于 ISO/IEC4443-B 标准的 13.56 MHz 电子标签,该项 目可以说国内乃至国际上最大的RFID 应用的项目之一。
  • RF(射频)专指具有一定波长可用于无线电通信的电磁波。电磁波可由其频率表述为:KHz(千赫),MHz(兆赫)及GHz(千兆赫)。其频率范围为VLF(极低频)也即10-30KHz至EHF(极高频)也即30-300GHz。
  • 13.56MHZ天线铁氧体片/膜一种高温烧结的铁氧材料。在NFC(Near Field Communication)支付手机等手持式设备中,电子标签上,主要作用是降低金属材料对信号磁场的吸收,同时铁氧体膜本身是一种高温烧结的铁氧体材料,通过增加磁场强度,有效增加感应距离。
  • 被测天线是一款工作在RFID全频段(860 MHz-960 MHz)的阵列天线,可安装于吊顶、安检门、珠宝柜内部,适用于各种通道场景。
  • RFID应用越来越广泛,市场规模也在不断扩大,同时在技术上的要求也在趋于多样化个性化。该文提出了一种超小型433 MHz PCB天线,增益为-17 dB,达到了RFID系统的应用要求。该天线半径为14 mm的半圆区域,尺寸小,同时满足标签小型化和天线性能两方面的要求。
  • Melexis公司的MLX90132是13.56MHz全集成的多协议NFC/RFID收发器,可处理亚载波频率106kHz~848kHz,高达848kbps,双路驱动器架构把外接元件数减少,能向合适的天线负载提供高达70mW的RF功率。器件和ISO/IEC 18092 (NFC),ISO/IEC 14443 A1与B2, ISO/IEC 15693以及ISO/IEC 18000-3 模式1兼容,主要用在汽车接入和起动, 汽车发动机防盗,汽车诊断和汽车租赁。
  • 天线增益反应了天线定向传送电磁波能力的强弱。天线增益与天线半功率波束宽度(既天线辐射区域角度大小)为两个互相制约的天线属性,天线增益越大,辐射角度越小,反之亦然。该天线实测增益在860-960MHz时,增益大于7dBi;895-940MHz,增益趋近7.5dBi;940-960MHz处,接近7.8dBi。
  • 近年来,射频识别(RFID)技术取得了广泛的商业应用,特别是我国政府于2009年开始出台相关政策,提出要大力发展物联网技术与产业,而物联网的核心技术之一即为RFID。在RFID系统中,天线作为能量的转换器,在发送和接收信息的过程中实现了电磁能量的相互转换。因此,天线的性能好坏直接影响整个系统的性能。
  • 文章针对RFID 系统中的一种PCB 环型天线设计。在对天线的工作原理进行分析的基础上,提出基于13.56 MHz、200 mw 的低功率阅读器的天线设计方法,并给出天线的设计和调试过程。
  • 针对传统输变电设备在线监测系统难以满足故障定位精确、多参数集中监测的现状, 提出一种新型输变电设备在线监测系统架构, 并重点研究了用于状态监测的智能电子装置( IED) 。设计了一种基于射频识别( RFID) 技术的状态监测 IED, 主要由微处理器、温度传感器、电流传感器、电压传感器和一种有源 RFID 芯片构成。仿真与测试结果表明: IED 天线回波损耗约为 - 13. 1 dB, 载波频率为 865. 8 MHz 时,IED 最大读写距离为 18 m, IED 驱动电流和工作电流分别为 520, 210 μA, 性能优于 SL9000A。
  • 提出了一款适用于移动终端的多入多出(MIMO)手机天线。该MIMO天线由两个中心对称的天线单元构成,采用耦合馈电方式,拓展了天线带宽,保证了天线的小型化。通过地板中间引入T型枝节,天线单元之间用中和线进行连接,达到提高天线单元间隔离度的目的。仿真结果表明,该天线能够覆盖824 MHz~960 MHz和2 300 MHz~2 600 MHz两个重要工作频段,中和线上加载的集总电感元件能有效减小中和线的物理长度。对天线进行了实物加工测试,实物测量结果与仿真结果比较吻合。
  • NFC技术由免接触式射频识别(RFID)演变而来,RFID的传输范围可以达到几米、甚至几十米,只能实现信息的读取以及判定,而NFC技术则强调的是信息交互。近场通信是工作在13.56MHz频率运行于20厘米距离内,其传输速度有106Kbit/秒、212Kbit/秒或者424Kbit/秒三种。
  • 采用有限元的方法对一选定天线的场强进行仿真分析,并结合实际测试来研究和论证的。工作频率为13.56 MHz。基于亥姆霍兹线圈磁场叠加的原理,考虑在工作天线附近增加一开路线圈,区别是线圈与工作天线不直接相连。在电磁场环境下,附加的开路线圈感应出相应的电流和磁场进而对工作天线产生影响,并且改善工作天线的阻抗,通过调整附加线圈与工作天线之间的距离来增强所需位置的场强。此方法分析了附加线圈与工作天线之间不同的位置、距离以及附加线圈的大小和通断等情况,给出了这些情况下工作天线的电流和磁场的变化。通过仿真和实测数据表明此方法的有效性。
  • 当前RFID标签技术有着极为广泛的应用,为了减少RFID标签的制造成本和提高工作的可靠性,提出了一种有机补偿电路。该电路集成了8个阶段的有机整流器,其最高工作频率可以达到14 MHz,以及一个集成的PUF结构,它产生一个不可克隆的随机码,每一个独立的结构生成自己的代码,并可以准确地从其他电路中识别出来,耦合这两个电路以及天线将可以建立一个RFID无源标签。该方案可以应用于塑料薄膜中逐片有机处理的RFID标签中,方便设计和制造出复杂的全有机电路。
  • 本文的NXP实用的NFC电子钱包解决方案,以13.56MHz的操作频率为基础,以手机为交易平台,由NXP PN544 NFC控制器(PN65O内置了安全模块)和安全模块两大部分实现移动支付及数据交换功能,为电子支付提供便捷、安全、超凡体验。
  • 本文简要介绍了由13.56 MHz射频芯片设计的RFID读卡器,重点论述该读卡器天线的设计与实现。经实践证明,该天线具有良好的性能,使用该天线的阅读器工作稳定。
  • 为满足读写器天线工作于840~845 MHz和920~925 MHz两个频段的要求,如果直接采用微带天线设计,则存在着天线的频带比较窄,不能满足两个频段要求的缺点。一种新的设计思路是设计一款双频带微带天线,使其两个频带分别覆盖840~845 MHz和920~925 MHz两个频段。这样做的好处是既满足了双频段的要求,又在一定程度上过滤了两频段间的干扰和噪声进入读写器的接收系统。
  • 本文提出了一种基于有限的人工阻抗表面(AIS)的新型无芯片RFID湿度传感器,无线传感器使用低成本喷墨印刷技术实现在薄片铜版纸上制造,将图案化的表面放置在金属背衬的纸板层上。相对湿度信息以谐振峰值的频移进行编码,相对湿度水平从50%到90%不等,频移可达到270 MHz。
  • 结合现在许多工程师在使用方面遇到的诸多问题,本文将以13.56MHz无源RFID系统用到吸波材料为例,用简单、浅显和通俗的语言来阐述,希望能带给读者一些帮助。
  • 针对现有汽车门禁系统和胎压监测系统相互独立,硬件冗余和生产成本高的问题,提出了一种基于射频识别技术的汽车安全防盗系统的设计方案。在射频通信上,该系统采用434 MHz 的UHF 频段与125 kHz 的LF 频段相结合的方法,实现了系统胎压监测、遥控门锁和发动机防盗锁止等功能。
  • 本文所讨论的系统基于RFID高频13.56 MHz的工作频率,针对目前逐步呈现集中化、规模化、工业化的洗衣工厂以及其服务对象如医院、宾馆等,可以大幅提高工业洗衣企业管理效率,降低管理过程中的错误率,最终达到有效管理、以管理促生产的目的。
  • NFC即近距离无线通信。是由恩智浦公司发起,由诺基亚、索尼等着名厂商联合主推的一项无线技术---在单一芯片上结合感应式读卡器、感应式卡片和点对点的功能,能在短距离内与兼容设备进行识别和数据交换。NFC具有双向连接和识别的特点,工作于13.56MHz频率范围,作用距离接近10厘米。
  • 本文介绍了高频RFID读写芯片MFRC530和USB接口芯片CH374T,给出了13.56MHZ阅读器的设计方法,对单片机控制MFRC530的具体开发方案和电路原理图进行分析。通过USB接口,实现了上位机和阅读器之间的数据传输,并详细介绍下位机软件的实现。
  • 在当前的许多RFID应用中,设备制造商不一定能决定客户采用什么收发器,特别是收发器芯片。因此,为了最大程度地提高自己在某个特定项目中中标的机会,设备制造商必须提供这样的读卡器,要么它能支持市场上尽可能多的收发器芯片,要么它本身至少是比较容易定制的。
  • 针对基于声表面波技术的射频识别系统工作原理,提出利用COMSOL软件进行ZnO单晶材料射频波标签特性研究,进行多物理域耦合建模与仿真。提取出符合声表面波特性的模态图,得到正特征频率和反特征频率分别为268 MHz和275 MHz。通过对特征频率的仿真分析,计算ZnO单晶的相速度达到2 715 m/s;通过频率响应分析,画出标签位移与频率之间的关系图,获得了标签的幅频特性;最后讨论脉冲幅度编码对回波脉冲的影响。